Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue, eISSN

2394-1707

Secure Web Application: Rudimentary perspective

IPS Sethi, Sanjay Kumar Sinha?, Neeta Chauhan?®, Deepti Khanduja*

1.234 National Informatics Centre, New Delhi

Isethi@nic.in, 2sanjayk.sinha@nic.in, ®neeta.chauhan@nic.in, *deepti.khanduja@nic.in

Abstract: WWW, one of the most pervasive technologies for
information and service delivery over Internet with a
potential to revise and preserve the web applications without
dispensing and installing software on doubtlessly millions of
client computers. As the web applications are increasingly
used for crucial services, they have become a prominent and
relevant target for any security outbreak. Software security is
a methodology which guards against the malicious attacks
and security failures along with an aim to increase system
reliability. The prime objective of software security is to gain
knowledge about the vulnerabilities in a system and foresee
attacker’s motive and perception.

This paper reviews the existing techniques of web
application security, with the aim of standardizing them into
a bigger picture to enable the future research areas. The
scrutiny of a web application attack and the attack techniques
are also enclosed in details. Lastly the parameters to provide
a secure hosting surrounding to the applications are indexed.
The paper summarizes the security of web application in a
holistic manner and provides a range of ways to ensure that
it’s as secure as it can be, as well as forever improving.

Keywords: Security, OWASP, SDLC, SQL Injection,
Web Application Firewall.

1. Introduction

WWW, one of the most pervasive technologies for
information and service delivery over Internet with a
potential to revise and preserve the web applications
without dispensing and installing software on doubtlessly
millions of client computers. WWW has emerged from a
system that used to distribute static web-pages to a
platform that now supports distributed applications, known
as web applications.

Web application consists of multiple layers, like
web browsers, hosts (e.g. Application server, Web server
and database server), data stored on the hosts, and network.
Each layer of web application has its security issues which
may result in vulnerability and hence must be secured.

With the Web being an open source system and
web applications delivering critical services, they become
one of the invaluable targets for security attacks. The

185

security of web applications has become a paramount
concern for users of such applications, especially if these
applications are complex and interactive, or if they involve
sensitive information exchanged in sectors such as finance,
health, or banking.

The primary objective of software security is
gaining knowledge about an attacker and anticipating his
motives and perceptions. Its primary objective is to
strengthen system reliability by guarding against
cybersecurity risks and failures. In today's world,
developing secure software is no longer a luxury, but a
necessity for every software company. Due to the
immediate to access web applications has motivated a
thriving number of researchers to specialize in web
application hardening and attack reduction.

Information security measures must meet the CIA
security triangle's three essential functions: Confidentiality,
Integrity, and Availability [2]. It is designed to serve as a
tool and guide for securing computer systems, networks,
and related technical assets. Due to the widespread use of
information systems and networks in modern society, it is
important to develop and enforce policies, procedures, and
mechanisms to address security issues while also achieving
the essential elements of the CIA triad.

The paper has been structured as follows. Section
Il gives a dip into the statistics of web service vulnerability
for the year 2019-20. Then, Section Il illustrates the
essential security properties that a secure web application
should adhere, as well as corresponding vulnerabilities and
attack vectors. Section IV provides a list of monitoring
parameters to provide a secure hosting environment. We
conclude our survey paper in Section V.

2. Assessment of Web Application

In this section we will examine the threat
landscape for web applications during the year 2019 to
2020. Security Misconfiguration vulnerabilities are the
most commonly encountered in web applications, as
Without the HttpOnly and Secure settings, hackers can
target the wuser session and steal sensitive cookies.
Attackers further use such flaws to execute Cross-Site
Scripting (XSS) in order to capture the user's session
identifier and impersonates the user in the application[11].

45 percent of web applications have a broken
authentication vulnerability, namely the inability to limit

JEET

mailto:1sethi@nic.in
mailto:2sanjayk.sinha@nic.in
mailto:neeta.chauhan@nic.in
mailto:4deepti.khanduja@nic.in

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

elSSN 2394-1707
the number of authentication attempts, which can be
exploited to access web applications.

It was reported by every third application that the
access control was broken, which resulted in information
being disclosed, modified, or destroyed to unauthorized
user. Nonetheless, a web application can be developed by
using the Secure Software Development Lifecycle
(SSDLC) during development to minimize authentication
and authorization vulnerabilities.

Clickjacking is a threat to another third of online
apps (User Interface Misrepresentation of Critical
Information, CWE451), where the user visits an attacker's
site and clicks a transparent HTML iframe, which results
in an unintended action on the susceptible site [11]. In
order to prevent such attacks, an HTTP header called X-
Frame-Options can be used.

CSRF attacks were discovered in another third of
the websites. In a CSRF attack, a hacker spoofs as a
registered user into a vulnerable website/application to
perform actions as that user. Typically, protection of
webapp involves requiring one-time keys (CSRF tokens),
verifying authenticity (with a password or OTP, for
example), confirming that a request has been originated
from an authorized user (using CAPTCHA), or using an
additional SameSite cookie flag [1].

According to statistics, 9 out of 10 web
applications are vulnerable to hacking. XSS is one of the
leading cause among these attacks. Users may become
infected with malware, and phishing attacks may be used
to steal their passwords. In order to prevent it, it is a
universal suggestion that web applications sanitize all user
input that is subsequently shown in a browser, particularly
HTTP request header fields such as User-Agent and
Referrer.[11] It is necessary to substitute non-formatting
equivalents for potentially unsafe characters on HTML
pages. In addition, it is recommended to use modern web
application firewalls (WAFs) that block cross-site
scripting.

Breaches of significant information are the
second-most dire threat to website security. In almost half
of all breaches (i.e., 47%) personal data was at risk while
User credentials(31%) figured prominently as well.
Information has been the prime target of hackers when
they target an organization.

A second-most significant threat to site security is
the compromise of vital information. The vast majority of
breaches (47%) have exposed personal information, while
31% exposed user credentials. Data has traditionally been a
top target for hackers when they strike at an organization.
According to the study, 82% of wvulnerabilities are
identified in the application code. Figure 1 depicts the
Severity of OWASP vulnerabilities in 2020. Testing of the
source code is therefore a key component of the Secure
Software Development Lifecycle, which can be done
independently with a code analyser or can be provided to
testers. An extensive white-box security assessment is
carried out simultaneously by several security experts to
detect as many vulnerabilities as possible. Table 1 depicts
the vulnerabilities detected by white box testing.

186

Table 1
Detected Vulnerabilities
OWASP No Name % detected by

white box testing

A4 XXE 100%

Al Injection 76%

A7 XSS 67%
As per The Verizon 2020 Data Breach

Investigation Report (DBIR) [3] data breaches are
increasingly predominantly caused by attacks against web
applications. The study is based on a review of 32,002
security incidents and 3,950 confirmed breaches across 81
contributors in 81 countries.

A huge 43% of security breaches have been
attributed to web application attacks - which is more than
double the results from last year. Figure 2 illustrates the
vulnerabilities by industries. Data breaches are
predominantly motivated by illicit financial gain (86%) - a
significant increase from 71 % in 2019 - while two thirds
(67%) are caused by breaching credentials, human mistake,
or social engineering attacks.

More than a quarter 27% of malware incidents
covered by the study were attributed to ransomware.

A6 — Security Misconfiguration | 54 %
A7 — Cross-Site Scripting (xss) N 5 3%
A2 — Broken Authentication NG 4 5%

A5 — Broken Access Control ENEEEEENNN— 37 %

Al—Injection NG 9%

—13%
I 13%

A3 — Sensitive Data Exposure

5%

A4 — XML External Entities (XXE)

Financial institutions

T

Manufacturing

Telecom

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Medium B Low

B Above average Below average B Extremely poor

3. A Strategy For Securing Web Applications

The security of Web applications is technology-
centric and influenced by organization rules and
regulations, legal policies, and the practices of the people
involved in deploying, developing, and maintaining Web
applications.

In this article, we cover a wide range of concepts
that together constitute the basis for data security. As we
look at web application security holistically, we offer
multiple options to ensure that it is as secure as it can be,
as well as continuously improving.

JEET

https://portswigger.net/daily-swig/ransomware

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

elSSN 2394-1707
A. Securing at Software Development Stage
Incorporating a security layer throughout all
phases of software development will provide software
users with a safe cyber environment. The Secure
SDLC(SSDLC) is a set of best practices aimed at the
enhancement of security within the standard SDLC[4].
From requirement gathering to deployment and
maintenance, building a secure SDLC process demands
dedicated effort at each step.

a. By keeping all security testing until the end of the
SDLC, you’re increasing the risk of having to break the
build at a late stage or allowing flaws to leak into the
application. With agile environments paving the way for
how all organizations will run in the near future, secure
coding is essential for the longevity of any organization to
be viable.

b. Treating functionality and performance bugs with
a higher regard than security bugs. Performance and
functionality are important aspects of any application and
your users deserve high-quality products[5]. Yet security
needs to be considered equally — and we can no longer
afford to compromise security for some sparkly feature. Do
not neglect security in favour of speed or number of
features in your application.

c. Test the app before each new release. Each new
release offers new code to attackers to find flaws to
exploit. Do not deploy small updates in your applications
without scanning the code changes. Don’t skimp on
security testing future releases, no matter how small the
added changes are. Ensuring that libraries are called
correctly, added components secure, and new code free of
vulnerabilities needs to be done each time you update an
application.

With incremental scanning available in the newer
SAST tools, testing for security flaws with each new
update doesn’t need to cause delays. Testing only the
newly implemented code and their dependencies,
incremental scanning can save lots of headaches and
resources caused when security testing slows down the
SDLC.

B. System Hardening

System hardening is the process of configuring an
asset in line with security to reduce its vulnerability to
cyber-attacks. The process involves reducing the ‘attack
surface’ of the asset by disabling unnecessary services,
user accounts, and ports.[7] It provides protection in layers,
i.e., protecting at the host level, the application level, the
operating system level, the user level, the physical level
and all the sublevels in between. Each level requiring a
unique method of security.

Hardening activities for a computer system
include the following:

187

e Keeping security patches and hot fixes updated

e Monitoring security bulletins that are applicable to a
system’s operating system and applications

e Installing a firewall

e Closing certain ports such as server ports

¢ Not allowing file sharing among programs

e Installing virus and spyware protection, including an
anti-adware tool so that malicious software cannot gain
access to the computer on which it is installed

o Keeping a backup, such as a hard drive, of the
computer system

e Disabling cookies

e Creating strong passwords

e Removing unnecessary programs and user accounts
from the computer

e Using encryption where possible

e Hardening security policies, such as local policies
relating to how often a password should be changed
and how long and in what format a password must be
in.

C. OS Hardening

Hardening of the OS is the act of configuring an
OS securely, updating it, creating rules and policies to help
govern the system in a secure manner, and removing
unnecessary applications and services[6]. This is done to
minimize a computer OS's exposure to threats and to
mitigate possible risk.

While different operating systems have their own
intricacies, there are numerous recommendations such as
configuring system and network components properly,
deleting unused files and applying the latest patches.

D. Server Hardening
Every wulnerability management programme
should include hardening servers while guaranteeing server
security. Attackers could take advantage of web server
weaknesses to obtain access to the systems that host web
servers and perform undesired actions[8].
The steps to acquire server hardening involves:

e Disable the signature: The server signature, commonly
known as the "server footer," can be disabled to prevent
the server name, server version number, and other
information from showing on the computer. It is
possible to secure web servers by including the
commands "ServerSignature Off" and "ServerTokens
Prod" in the server configuration file.

e Disable HTTP Trace and Track requests: Cross-site
scripting attacks are a common exploitation method, in
which attackers can capture the sessions cookies and
traffic connections from normal traffic, as well as any
data in transit using the HTTP TRACE and TRACK
methods.

JEET

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

elSSN 2394-1707

e Create non-root users: For basic administrative and
management tasks, you need to create and use non-root
accounts. This is a best practice measure for web
servers, but it also applies to other operating systems.

e Restrict IP access: In the case that your web server is
only used for limited purposes such as internal
organizational information sharing, hosting a static
website or testing and development, you can restrict
access to specific IP addresses.

e Disable SSLv2 and SSLv3: Despite being known to
have security problems, most web servers still run SSL
2.0/3.0 and TLS 1.0/1.1 protocols by default. This
compromises the security of any data transferred over
these protocols. Thus, SSLv2 and SSLv3 need to be
disabled, as well as TLS 1.0 and 1.1, and in their place,
we should enable TLS 1.2.

e Disable directory listing: Directory listing can also be
disabled in the same way as web server signatures. If
there is no index.html file in the root directory, web
servers display the content of the documents and files
there by default.

e Eliminate unused modules: If the web server is
configured using the default operating system
configuration, there's a high probability that several
dispensable modules are running. Because the more
services and functions a web server runs, the more
opportunity a potential hacker has to exploit your
network, disabling and turning off any superfluous
services, ports, or functions. A simple best practise. Is
that any internal or exterior ports and modules that
aren't in use should be disabled.

e Install Mod_evasive and Mod_security: Mod security
also referred to as ModSec, is a web server
supplemental firewall(WAF) that allows you to monitor
traffic in real time while also preventing host
connections if the module detects any brute-force
password attempts. Mod evasive (an Apache module) is
used to help prevent DDOS assaults by terminating
connections if too many requests arrive into a website
too soon, if a child process request tries to make too
many concurrent requests, or if any host IP tries to
contact the web server despite being banned.

e Constantly check for patches: You should check for
updates and patches on your server on a regular basis.
Even after installation, this should not be a one-time
function.

e Prevent Lateral attack within the same VLAN: Set Up
an Iptables Firewall to Protect Traffic Between your
Servers.

E. Prevent SQL Injection
The insertion or "injection” of a SQL query by the
entered data from the client to the application program is
referred to as a SQL injection attack. A successful SQL
injection exploit includes reading sensitive information
from the database, modification of database data

188

(Insert/Update/Delete), performing database administration
operations (such as shutting down the DBMS), recovering
the content of a given file on the DBMS file system, and
rarely, issuing commands to the operating system.

e |Instead of string concatenation, use parameterized
queries or stored procedures to access a database.
Parameterized queries(prepared statements) require you
to first specify all of the SQL code before passing each
argument to the query. This enables the database to
distinguish between code and data, regardless of the
type of user input provided. In the same way that
parameterized queries require you to create the SQL
code upfront and then pass in the parameters
afterwards, stored procedures do the same. A stored
procedure differs from a regular procedure in that the
SQL code for it is defined and saved in the database,
then invoked from the application.

e Protect user input by "whitelisting™ the characters that
are permitted. Allow just the letters a-z and A-Z if
you're asking for a name. Limit characters to 0-9 for
phone numbers. To do this, use the proper validation
mechanism allowed by your database.

e Use the character escaping strategy set up by your
database to escape user-supplied input. By escaping
special characters, you're telling your database that the
characters in your query are data rather than code. The
database will not confuse user-supplied input with SQL
code you've written if all user-supplied input is then
escaped using the right scheme.

o Don't make it easier for attackers. Ensure that error
messages do not reveal information that might be

exploited against the site later.

F. Auditing & Logging
The auditing and logging of security-relevant
events and system abnormalities are key elements in the
after-the fact detection of, and recovery form, security
breaches [10]. Even when implemented systematically and
full application coverage has been achieved, there are
several guidelines that should be considered

¢ No sensitive information or technical details should be
disclosed in error messages presented to the user. This
is to prevent an attacker from gaining a better
understanding of the internal implementation details or
the supporting infrastructure

e Standard HTTP error codes (e.g. 404, 500, etc.) should
be handled by the application and never be returned to
users. Most development frameworks provide
functionality to supply alternative error handlers.

e Logs must be stored in high-integrity remote
destinations. They should not be stored within the web
server. Access to the log storage should be secure
physically.

e Log data should be transmitted to the remote storage in
an encrypted and authenticated fashion. Consider using

JEET

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

elSSN 2394-1707
write-once read-many physical supports such as tapes
for log storage.

e The log storage should be appended only. It should not
be possible to delete records or overwrite existing
entries

e Read permission to the log should be granted carefully.
If an attacker manages to get access to the application’s
log, then very sensitive information may be disclosed

e Exclude sensitive data such as passwords from the logs
and ensure that logs are backed up regularly and that a
copy is kept in a safe off-site location

e Beware of log rotation mechanisms. Ensure that all
your logs are backed up prior to allowing any logs to be
rotated.

G. Access Control

The fundamental goal of the access control
module is to regulate which resources and operations can
be performed by which users within an application. Access
control mechanism must be rigorously enforced throughout
the application. Each module in the application must be
protected by an authorization filter where, every request is
matched against the authorization framework without
exception.

Access controls defines security policies and
enforce the defined security policy on the authorized
parties. The objective of access control is to preserve and
safeguard the integrity and confidentiality of data. The
various access control mechanisms are discussed that will
be used while designing and implementing access control
framework in application.

e Mandatory Access Control (MAC): The security policy
administrator defines the access control policy that is
strictly enforced in the system. The policy states the
resources and operations permitted for each user and
user cannot alter the policy rules. The strict system-
imposed rules mandate what processes and threads are
permitted to do with resources such as files and TCP
connections.

o Discretionary Access Control (DAC): Each resource in
the application is assigned to an owner. The owner of a
resource can decide to grant privileges to interact with
the resource to other users.

e Role-based Access Control (RBAC): Access to
resources is mandated through the use of groups
defined by a business role (e.g. Finance, Accounting,
Guests, etc.). Authenticated users can be a part of
multiple groups and thus access resources and
functionality accordingly.

In any web application with multiple privilege levels, at

least two different types of access control need to be

implemented:

o Vertical access controls ensure that users of a lower
privilege level cannot perform actions or access
resources reserved to higher privilege accounts.

189

e Horizontal access controls prevent users from accessing
or performing actions on resources that belong to other
users with at the same privilege level.

H. WAF

A ‘web application firewall (WAF)' is an HTTP
application firewall[9]. An HTTP interaction is subjected
to a set of rules. These rules, in general, protect against
common attacks like Cross-site Scripting (XSS) and SQL
Injection. WAFs defend servers rather than clients, like
proxies do. A web application firewall (WAF) is used to
safeguard a single web application or a group of web apps.
A reverse proxy may be thought of as a WAF.

WAFs provide a powerful protection since online
applications are continually evolving and every new
modification has the danger of creating a new
vulnerability. A WAF must not just detect and prevent
known threats at the application and business logic levels
to be effective. It must also detect zero-day vulnerabilities
and protect users from cyber-attacks.

WAFs can be deployed on-premise, in the cloud,
or a hybrid of the two, depending on the requirement,
infrastructure, and other factors. As more businesses
migrate their apps and data to the cloud, it's critical to
consider your security requirements. Adding a solution
with a dedicated security team to your selection criteria is a
good idea. To adequately secure your assets, security
teams can roll out timely security updates.

4. Hosting Environment Security

The application development team apart from the
knowledge of development platform, should have working
knowledge of server hardening (OS, database), network
infrastructure and its security so that the application can be
hosted in a secure environment. The following parameters
should be monitored.

1. VA of servers (both OS and database) should be done
periodically

2. All servers should be tightened with respect to
security and monitored regularly

3. Additional security measures may be implemented
for intrusion prevention.

4. Application security audit should be renewed
periodically even though there is no change in the
code

5. Regularly check audit logs for authenticated traffic.

6. Antivirus should be enabled on all the server

7. All uploaded files should be scanned by AV to the
application

8. All public sites should run on SSL

9. All logs to be enabled in the servers for capturing
footprints.

JEET

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

elSSN 2394-1707

10. WAF (Web application firewalls) must be
implemented in all servers.

11. Patch Management Solutions (PMS) to be
implemented regularly in the servers.

12. Firewall policies may be strengthened. No unwanted

ports should be left open.

Applications should not be hosted with
privileges.

Creating strong passwords and keep changing
passwords after an interval.

If users are limited for a public site, white list IP
range for authorized users.

Prepare proper diagram of the interaction if the
software is exchanging data and information with
other softwares to validate and secure communication
Regularly check Inbound Traffic, Outbound Traffic,
traffic at port 80.

Synchronize your servers with NTP server

Regularly check IPS logs which gives the report about
most attacking clients, clients using highest
consuming bandwidth and detect and prevent
identified threats.

If any suspicious Ip is found, get its details from the
network team and capture the data packet which is
being sent to it or accessed by it. It will clarify any
vulnerability in your software or lack in hardening.

If logs are studied properly then it can act as major
breakthrough in finding ambiguities if any, which
otherwise go unnoticed and undetected. For example,
if you define a server entry in /etc/sysconfig/network
file and the same entry is missing in /etc/hosts , then

to resolve the server IP, it will keep hitting DNS
server which is undesirable.

13. root

14,
15.

16.

17.

18.
19.

20.

21.

5. Conclusions

However, the fraction of online apps with
significant vulnerabilities is steadily decreasing year after
year. It's not simple to achieve and maintain excellent web
application security on a constant basis. There are two
ground rules, however:

e Fixany detected flaws as soon as possible
e Make processes automatic wherever possible

Preventive techniques such as web application
firewalls (WAFs) offer a powerful protection since online
applications are continually evolving and every new
modification carries the danger of creating a new
vulnerability.

It must also identify zero-day exploits, protect
users from assaults, and analyse and correlate events in
order to discover attack chains.

The concept of building websites to work as
planned, even when they are under attack, is web
application security. To protect its properties from
potentially malicious agents, the definition requires a series
of security controls built into a web application. Online

190

applications invariably involve bugs, like all apps. Any of
these bugs represent real vulnerabilities that can be abused,
putting organizations at risk. Protection for web
applications protects against such defects. Throughout the
life cycle of software development, it includes exploiting
safe development practices and enforcing security controls,
ensuring that design-level vulnerabilities and
implementation-level bugs are addressed.

References

[1] D. H. G. B. ,. P. L. A. P. Suzanne Widup, "2020
Verizon Data Breach Investigations Report,” 2020.

R. M. N. K. S. K. K. Sandeep Kumar, "A study on
web application security and detecting security
vulnerabilities," in 2017 6th International Conference
on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions), 2017.

S.a.H.M.a. H.B.a A A a A M. a. |l. K Rafique,
"Web application security vulnerabilities detection
approaches: A systematic mapping study,” in 2015
IEEE/ACIS 16th International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing
(SNPD), 2015.

X. a. X. Y. Li, "A Survey on Server-Side Approaches
to Securing Web Applications,” ACM Comput. Surv.,
p. 29, 2014.

N. P. a. M. R. B. a. M. H. Khan, "Software Security
Issues: Requirement Perspectives," International
Journal of Scientific & Engineering Research, 2014.

A. a. J. S. Dalai, "Evaluation of web application
security risks and secure design patterns,” in
Proceedings of the 2011 International Conference on
Communication, Computing & Security, 2011.

D. a. P. S. Banerjee, "Research on software security
awareness: problems and prospects,” ACM SIGSOFT
Software Engineering Notes, pp. 1-5, 10 2010.

J. a. W. S. Andress, "The Basics of Information
Security: Understanding the Fundamentals of InfoSec
in Theory and Practice: Second Edition," pp. 1-217,
01 2014.

M. Al-ibrahim, "The Reality of Applying Security in
Web Applications in Academia,” International
Journal of Advanced Computer Science and
Applications, 2014.

[10] O. M. Y. a. R. I. Alhazmi, "Security Vulnerabilities in
Software Systems: A Quantitative Perspective," in
Data and Applications Security XIX, Berlin,
Heidelberg, 2005.

[11] P. technologies, "www.ptsecurity.com".

(2]

(3]

[4]
(5]

(6]

[7]

(8]

(9]

Acknowledgement

This research was supported by National Informatics
Centre. We thank our colleagues from NIC who provided
insight and expertise that greatly assisted the research. We
would also like to show our gratitude for sharing their
pearls of wisdom with us during the course of this
research.

JEET

