
Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue, eISSN

2394-1707

185

Secure Web Application: Rudimentary perspective

IPS Sethi1, Sanjay Kumar Sinha2, Neeta Chauhan3, Deepti Khanduja 4

1,2,3,4 National Informatics Centre, New Delhi
1sethi@nic.in, 2sanjayk.sinha@nic.in, 3neeta.chauhan@nic.in, 4deepti.khanduja@nic.in

Abstract: WWW, one of the most pervasive technologies for

information and service delivery over Internet with a

potential to revise and preserve the web applications without

dispensing and installing software on doubtlessly millions of

client computers. As the web applications are increasingly

used for crucial services, they have become a prominent and

relevant target for any security outbreak. Software security is

a methodology which guards against the malicious attacks

and security failures along with an aim to increase system

reliability. The prime objective of software security is to gain

knowledge about the vulnerabilities in a system and foresee

attacker’s motive and perception.

This paper reviews the existing techniques of web

application security, with the aim of standardizing them into

a bigger picture to enable the future research areas. The

scrutiny of a web application attack and the attack techniques

are also enclosed in details. Lastly the parameters to provide

a secure hosting surrounding to the applications are indexed.

The paper summarizes the security of web application in a

holistic manner and provides a range of ways to ensure that

it’s as secure as it can be, as well as forever improving.

Keywords: Security, OWASP, SDLC, SQL Injection,

Web Application Firewall.

1. Introduction

WWW, one of the most pervasive technologies for

information and service delivery over Internet with a

potential to revise and preserve the web applications

without dispensing and installing software on doubtlessly

millions of client computers. WWW has emerged from a

system that used to distribute static web-pages to a

platform that now supports distributed applications, known

as web applications.

Web application consists of multiple layers, like

web browsers, hosts (e.g. Application server, Web server

and database server), data stored on the hosts, and network.

Each layer of web application has its security issues which

may result in vulnerability and hence must be secured.

With the Web being an open source system and

web applications delivering critical services, they become

one of the invaluable targets for security attacks. The

security of web applications has become a paramount

concern for users of such applications, especially if these

applications are complex and interactive, or if they involve

sensitive information exchanged in sectors such as finance,

health, or banking.

The primary objective of software security is

gaining knowledge about an attacker and anticipating his

motives and perceptions. Its primary objective is to

strengthen system reliability by guarding against

cybersecurity risks and failures. In today's world,

developing secure software is no longer a luxury, but a

necessity for every software company. Due to the

immediate to access web applications has motivated a

thriving number of researchers to specialize in web

application hardening and attack reduction.

Information security measures must meet the CIA

security triangle's three essential functions: Confidentiality,

Integrity, and Availability [2]. It is designed to serve as a

tool and guide for securing computer systems, networks,

and related technical assets. Due to the widespread use of

information systems and networks in modern society, it is

important to develop and enforce policies, procedures, and

mechanisms to address security issues while also achieving

the essential elements of the CIA triad.

 The paper has been structured as follows. Section

II gives a dip into the statistics of web service vulnerability

for the year 2019-20. Then, Section III illustrates the

essential security properties that a secure web application

should adhere, as well as corresponding vulnerabilities and

attack vectors. Section IV provides a list of monitoring

parameters to provide a secure hosting environment. We

conclude our survey paper in Section V.

2. Assessment of Web Application

In this section we will examine the threat

landscape for web applications during the year 2019 to

2020. Security Misconfiguration vulnerabilities are the

most commonly encountered in web applications, as

Without the HttpOnly and Secure settings, hackers can

target the user session and steal sensitive cookies.

Attackers further use such flaws to execute Cross-Site

Scripting (XSS) in order to capture the user's session

identifier and impersonates the user in the application[11].

45 percent of web applications have a broken

authentication vulnerability, namely the inability to limit

mailto:1sethi@nic.in
mailto:2sanjayk.sinha@nic.in
mailto:neeta.chauhan@nic.in
mailto:4deepti.khanduja@nic.in

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

eISSN 2394-1707

186

the number of authentication attempts, which can be

exploited to access web applications.

It was reported by every third application that the

access control was broken, which resulted in information

being disclosed, modified, or destroyed to unauthorized

user. Nonetheless, a web application can be developed by

using the Secure Software Development Lifecycle

(SSDLC) during development to minimize authentication

and authorization vulnerabilities.

Clickjacking is a threat to another third of online

apps (User Interface Misrepresentation of Critical

Information, CWE451), where the user visits an attacker's

site and clicks a transparent HTML iframe, which results

in an unintended action on the susceptible site [11]. In

order to prevent such attacks, an HTTP header called X-

Frame-Options can be used.

CSRF attacks were discovered in another third of

the websites. In a CSRF attack, a hacker spoofs as a

registered user into a vulnerable website/application to

perform actions as that user. Typically, protection of

webapp involves requiring one-time keys (CSRF tokens),

verifying authenticity (with a password or OTP, for

example), confirming that a request has been originated

from an authorized user (using CAPTCHA), or using an

additional SameSite cookie flag [1].

According to statistics, 9 out of 10 web

applications are vulnerable to hacking. XSS is one of the

leading cause among these attacks. Users may become

infected with malware, and phishing attacks may be used

to steal their passwords. In order to prevent it, it is a

universal suggestion that web applications sanitize all user

input that is subsequently shown in a browser, particularly

HTTP request header fields such as User-Agent and

Referrer.[11] It is necessary to substitute non-formatting

equivalents for potentially unsafe characters on HTML

pages. In addition, it is recommended to use modern web

application firewalls (WAFs) that block cross-site

scripting.

Breaches of significant information are the

second-most dire threat to website security. In almost half

of all breaches (i.e., 47%) personal data was at risk while

User credentials(31%) figured prominently as well.

Information has been the prime target of hackers when

they target an organization.

A second-most significant threat to site security is

the compromise of vital information. The vast majority of

breaches (47%) have exposed personal information, while

31% exposed user credentials. Data has traditionally been a

top target for hackers when they strike at an organization.

According to the study, 82% of vulnerabilities are

identified in the application code. Figure 1 depicts the

Severity of OWASP vulnerabilities in 2020. Testing of the

source code is therefore a key component of the Secure

Software Development Lifecycle, which can be done

independently with a code analyser or can be provided to

testers. An extensive white-box security assessment is

carried out simultaneously by several security experts to

detect as many vulnerabilities as possible. Table 1 depicts

the vulnerabilities detected by white box testing.

Table 1

Detected Vulnerabilities

OWASP No Name % detected by

white box testing

A4 XXE 100%

A1 Injection 76%

A7 XSS 67%

As per The Verizon 2020 Data Breach

Investigation Report (DBIR) [3] data breaches are

increasingly predominantly caused by attacks against web

applications. The study is based on a review of 32,002

security incidents and 3,950 confirmed breaches across 81

contributors in 81 countries.

A huge 43% of security breaches have been

attributed to web application attacks - which is more than

double the results from last year. Figure 2 illustrates the

vulnerabilities by industries. Data breaches are

predominantly motivated by illicit financial gain (86%) - a

significant increase from 71 % in 2019 - while two thirds

(67%) are caused by breaching credentials, human mistake,

or social engineering attacks.

More than a quarter 27% of malware incidents

covered by the study were attributed to ransomware.

Figure 1: Severity of OWASP VULNERABILITIES IN 2020

Figure 2: Vulnerabilities by Industry

3. A Strategy For Securing Web Applications

The security of Web applications is technology-

centric and influenced by organization rules and

regulations, legal policies, and the practices of the people

involved in deploying, developing, and maintaining Web

applications.

In this article, we cover a wide range of concepts

that together constitute the basis for data security. As we

look at web application security holistically, we offer

multiple options to ensure that it is as secure as it can be,

as well as continuously improving.

https://portswigger.net/daily-swig/ransomware

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

eISSN 2394-1707

187

A. Securing at Software Development Stage

Incorporating a security layer throughout all

phases of software development will provide software

users with a safe cyber environment. The Secure

SDLC(SSDLC) is a set of best practices aimed at the

enhancement of security within the standard SDLC[4].

From requirement gathering to deployment and

maintenance, building a secure SDLC process demands

dedicated effort at each step.

a. By keeping all security testing until the end of the

SDLC, you’re increasing the risk of having to break the

build at a late stage or allowing flaws to leak into the

application. With agile environments paving the way for

how all organizations will run in the near future, secure

coding is essential for the longevity of any organization to

be viable.

b. Treating functionality and performance bugs with

a higher regard than security bugs. Performance and

functionality are important aspects of any application and

your users deserve high-quality products[5]. Yet security

needs to be considered equally – and we can no longer

afford to compromise security for some sparkly feature. Do

not neglect security in favour of speed or number of

features in your application.

c. Test the app before each new release. Each new

release offers new code to attackers to find flaws to

exploit. Do not deploy small updates in your applications

without scanning the code changes. Don’t skimp on

security testing future releases, no matter how small the

added changes are. Ensuring that libraries are called

correctly, added components secure, and new code free of

vulnerabilities needs to be done each time you update an

application.

With incremental scanning available in the newer

SAST tools, testing for security flaws with each new

update doesn’t need to cause delays. Testing only the

newly implemented code and their dependencies,

incremental scanning can save lots of headaches and

resources caused when security testing slows down the

SDLC.

B. System Hardening

System hardening is the process of configuring an

asset in line with security to reduce its vulnerability to

cyber-attacks. The process involves reducing the ‘attack

surface’ of the asset by disabling unnecessary services,

user accounts, and ports.[7] It provides protection in layers,

i.e., protecting at the host level, the application level, the

operating system level, the user level, the physical level

and all the sublevels in between. Each level requiring a

unique method of security.

Hardening activities for a computer system

include the following:

 Keeping security patches and hot fixes updated

 Monitoring security bulletins that are applicable to a

system’s operating system and applications

 Installing a firewall

 Closing certain ports such as server ports

 Not allowing file sharing among programs

 Installing virus and spyware protection, including an

anti-adware tool so that malicious software cannot gain

access to the computer on which it is installed

 Keeping a backup, such as a hard drive, of the

computer system

 Disabling cookies

 Creating strong passwords

 Removing unnecessary programs and user accounts

from the computer

 Using encryption where possible

 Hardening security policies, such as local policies

relating to how often a password should be changed

and how long and in what format a password must be

in.

C. OS Hardening

Hardening of the OS is the act of configuring an

OS securely, updating it, creating rules and policies to help

govern the system in a secure manner, and removing

unnecessary applications and services[6]. This is done to

minimize a computer OS's exposure to threats and to

mitigate possible risk.

While different operating systems have their own

intricacies, there are numerous recommendations such as

configuring system and network components properly,

deleting unused files and applying the latest patches.

D. Server Hardening

Every vulnerability management programme

should include hardening servers while guaranteeing server

security. Attackers could take advantage of web server

weaknesses to obtain access to the systems that host web

servers and perform undesired actions[8].

The steps to acquire server hardening involves:

 Disable the signature: The server signature, commonly

known as the "server footer," can be disabled to prevent

the server name, server version number, and other

information from showing on the computer. It is

possible to secure web servers by including the

commands "ServerSignature Off" and "ServerTokens

Prod" in the server configuration file.

 Disable HTTP Trace and Track requests: Cross-site

scripting attacks are a common exploitation method, in

which attackers can capture the sessions cookies and

traffic connections from normal traffic, as well as any

data in transit using the HTTP TRACE and TRACK

methods.

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

eISSN 2394-1707

188

 Create non-root users: For basic administrative and

management tasks, you need to create and use non-root

accounts. This is a best practice measure for web

servers, but it also applies to other operating systems.

 Restrict IP access: In the case that your web server is

only used for limited purposes such as internal

organizational information sharing, hosting a static

website or testing and development, you can restrict

access to specific IP addresses.

 Disable SSLv2 and SSLv3: Despite being known to

have security problems, most web servers still run SSL

2.0/3.0 and TLS 1.0/1.1 protocols by default. This

compromises the security of any data transferred over

these protocols. Thus, SSLv2 and SSLv3 need to be

disabled, as well as TLS 1.0 and 1.1, and in their place,

we should enable TLS 1.2.

 Disable directory listing: Directory listing can also be

disabled in the same way as web server signatures. If

there is no index.html file in the root directory, web

servers display the content of the documents and files

there by default.

 Eliminate unused modules: If the web server is

configured using the default operating system

configuration, there's a high probability that several

dispensable modules are running. Because the more

services and functions a web server runs, the more

opportunity a potential hacker has to exploit your

network, disabling and turning off any superfluous

services, ports, or functions. A simple best practise. Is

that any internal or exterior ports and modules that

aren't in use should be disabled.

 Install Mod_evasive and Mod_security: Mod security

also referred to as ModSec, is a web server

supplemental firewall(WAF) that allows you to monitor

traffic in real time while also preventing host

connections if the module detects any brute-force

password attempts. Mod evasive (an Apache module) is

used to help prevent DDOS assaults by terminating

connections if too many requests arrive into a website

too soon, if a child process request tries to make too

many concurrent requests, or if any host IP tries to

contact the web server despite being banned.

 Constantly check for patches: You should check for

updates and patches on your server on a regular basis.

Even after installation, this should not be a one-time

function.

 Prevent Lateral attack within the same VLAN: Set Up

an Iptables Firewall to Protect Traffic Between your

Servers.

E. Prevent SQL Injection

The insertion or "injection" of a SQL query by the

entered data from the client to the application program is

referred to as a SQL injection attack. A successful SQL

injection exploit includes reading sensitive information

from the database, modification of database data

(Insert/Update/Delete), performing database administration

operations (such as shutting down the DBMS), recovering

the content of a given file on the DBMS file system, and

rarely, issuing commands to the operating system.

 Instead of string concatenation, use parameterized

queries or stored procedures to access a database.

Parameterized queries(prepared statements) require you

to first specify all of the SQL code before passing each

argument to the query. This enables the database to

distinguish between code and data, regardless of the

type of user input provided. In the same way that

parameterized queries require you to create the SQL

code upfront and then pass in the parameters

afterwards, stored procedures do the same. A stored

procedure differs from a regular procedure in that the

SQL code for it is defined and saved in the database,

then invoked from the application.

 Protect user input by "whitelisting" the characters that

are permitted. Allow just the letters a-z and A-Z if

you're asking for a name. Limit characters to 0-9 for

phone numbers. To do this, use the proper validation

mechanism allowed by your database.

 Use the character escaping strategy set up by your

database to escape user-supplied input. By escaping

special characters, you're telling your database that the

characters in your query are data rather than code. The

database will not confuse user-supplied input with SQL

code you've written if all user-supplied input is then

escaped using the right scheme.

 Don't make it easier for attackers. Ensure that error

messages do not reveal information that might be

exploited against the site later.

F. Auditing & Logging

The auditing and logging of security-relevant

events and system abnormalities are key elements in the

after-the fact detection of, and recovery form, security

breaches [10]. Even when implemented systematically and

full application coverage has been achieved, there are

several guidelines that should be considered

 No sensitive information or technical details should be

disclosed in error messages presented to the user. This

is to prevent an attacker from gaining a better

understanding of the internal implementation details or

the supporting infrastructure

 Standard HTTP error codes (e.g. 404, 500, etc.) should

be handled by the application and never be returned to

users. Most development frameworks provide

functionality to supply alternative error handlers.

 Logs must be stored in high-integrity remote

destinations. They should not be stored within the web

server. Access to the log storage should be secure

physically.

 Log data should be transmitted to the remote storage in

an encrypted and authenticated fashion. Consider using

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

eISSN 2394-1707

189

write-once read-many physical supports such as tapes

for log storage.

 The log storage should be appended only. It should not

be possible to delete records or overwrite existing

entries

 Read permission to the log should be granted carefully.

If an attacker manages to get access to the application’s

log, then very sensitive information may be disclosed

 Exclude sensitive data such as passwords from the logs

and ensure that logs are backed up regularly and that a

copy is kept in a safe off-site location

 Beware of log rotation mechanisms. Ensure that all

your logs are backed up prior to allowing any logs to be

rotated.

G. Access Control

The fundamental goal of the access control

module is to regulate which resources and operations can

be performed by which users within an application. Access

control mechanism must be rigorously enforced throughout

the application. Each module in the application must be

protected by an authorization filter where, every request is

matched against the authorization framework without

exception.

Access controls defines security policies and

enforce the defined security policy on the authorized

parties. The objective of access control is to preserve and

safeguard the integrity and confidentiality of data. The

various access control mechanisms are discussed that will

be used while designing and implementing access control

framework in application.

 Mandatory Access Control (MAC): The security policy

administrator defines the access control policy that is

strictly enforced in the system. The policy states the

resources and operations permitted for each user and

user cannot alter the policy rules. The strict system-

imposed rules mandate what processes and threads are

permitted to do with resources such as files and TCP

connections.

 Discretionary Access Control (DAC): Each resource in

the application is assigned to an owner. The owner of a

resource can decide to grant privileges to interact with

the resource to other users.

 Role-based Access Control (RBAC): Access to

resources is mandated through the use of groups

defined by a business role (e.g. Finance, Accounting,

Guests, etc.). Authenticated users can be a part of

multiple groups and thus access resources and

functionality accordingly.

In any web application with multiple privilege levels, at

least two different types of access control need to be

implemented:

 Vertical access controls ensure that users of a lower

privilege level cannot perform actions or access

resources reserved to higher privilege accounts.

 Horizontal access controls prevent users from accessing

or performing actions on resources that belong to other

users with at the same privilege level.

H. WAF
A 'web application firewall (WAF)' is an HTTP

application firewall[9]. An HTTP interaction is subjected

to a set of rules. These rules, in general, protect against

common attacks like Cross-site Scripting (XSS) and SQL

Injection. WAFs defend servers rather than clients, like

proxies do. A web application firewall (WAF) is used to

safeguard a single web application or a group of web apps.

A reverse proxy may be thought of as a WAF.

WAFs provide a powerful protection since online

applications are continually evolving and every new

modification has the danger of creating a new

vulnerability. A WAF must not just detect and prevent

known threats at the application and business logic levels

to be effective. It must also detect zero-day vulnerabilities

and protect users from cyber-attacks.

WAFs can be deployed on-premise, in the cloud,

or a hybrid of the two, depending on the requirement,

infrastructure, and other factors. As more businesses

migrate their apps and data to the cloud, it's critical to

consider your security requirements. Adding a solution

with a dedicated security team to your selection criteria is a

good idea. To adequately secure your assets, security

teams can roll out timely security updates.

4. Hosting Environment Security

The application development team apart from the

knowledge of development platform, should have working

knowledge of server hardening (OS, database), network

infrastructure and its security so that the application can be

hosted in a secure environment. The following parameters

should be monitored.

1. VA of servers (both OS and database) should be done

periodically

2. All servers should be tightened with respect to

security and monitored regularly

3. Additional security measures may be implemented

for intrusion prevention.

4. Application security audit should be renewed

periodically even though there is no change in the

code

5. Regularly check audit logs for authenticated traffic.

6. Antivirus should be enabled on all the server

7. All uploaded files should be scanned by AV to the

application

8. All public sites should run on SSL

9. All logs to be enabled in the servers for capturing

footprints.

Journal of Engineering Education Transformations, Volume No 36, December 2022, Special issue,

eISSN 2394-1707

190

10. WAF (Web application firewalls) must be

implemented in all servers.

11. Patch Management Solutions (PMS) to be

implemented regularly in the servers.

12. Firewall policies may be strengthened. No unwanted

ports should be left open.

13. Applications should not be hosted with root

privileges.

14. Creating strong passwords and keep changing

passwords after an interval.

15. If users are limited for a public site, white list IP

range for authorized users.

16. Prepare proper diagram of the interaction if the

software is exchanging data and information with

other softwares to validate and secure communication

17. Regularly check Inbound Traffic, Outbound Traffic,

traffic at port 80.

18. Synchronize your servers with NTP server

19. Regularly check IPS logs which gives the report about

most attacking clients, clients using highest

consuming bandwidth and detect and prevent

identified threats.

20. If any suspicious Ip is found, get its details from the

network team and capture the data packet which is

being sent to it or accessed by it. It will clarify any

vulnerability in your software or lack in hardening.

21. If logs are studied properly then it can act as major

breakthrough in finding ambiguities if any, which

otherwise go unnoticed and undetected. For example,
if you define a server entry in /etc/sysconfig/network

file and the same entry is missing in /etc/hosts , then

to resolve the server IP, it will keep hitting DNS

server which is undesirable.

5. Conclusions

However, the fraction of online apps with

significant vulnerabilities is steadily decreasing year after

year. It's not simple to achieve and maintain excellent web

application security on a constant basis. There are two

ground rules, however:

 Fix any detected flaws as soon as possible

 Make processes automatic wherever possible

Preventive techniques such as web application

firewalls (WAFs) offer a powerful protection since online

applications are continually evolving and every new

modification carries the danger of creating a new

vulnerability.

It must also identify zero-day exploits, protect

users from assaults, and analyse and correlate events in

order to discover attack chains.

The concept of building websites to work as

planned, even when they are under attack, is web

application security. To protect its properties from

potentially malicious agents, the definition requires a series

of security controls built into a web application. Online

applications invariably involve bugs, like all apps. Any of

these bugs represent real vulnerabilities that can be abused,

putting organizations at risk. Protection for web

applications protects against such defects. Throughout the

life cycle of software development, it includes exploiting

safe development practices and enforcing security controls,

ensuring that design-level vulnerabilities and

implementation-level bugs are addressed.

References

[1] D. H. G. B. ,. P. L. A. P. Suzanne Widup, "2020

Verizon Data Breach Investigations Report," 2020.

[2] R. M. N. K. S. K. K. Sandeep Kumar, "A study on

web application security and detecting security

vulnerabilities," in 2017 6th International Conference

on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions), 2017.

[3] S. a. H. M. a. H. B. a. A. A. a. A. M. a. I. K. Rafique,

"Web application security vulnerabilities detection

approaches: A systematic mapping study," in 2015

IEEE/ACIS 16th International Conference on

Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing

(SNPD), 2015.

[4] X. a. X. Y. Li, "A Survey on Server-Side Approaches

to Securing Web Applications," ACM Comput. Surv.,

p. 29, 2014.

[5] N. P. a. M. R. B. a. M. H. Khan, "Software Security

Issues: Requirement Perspectives," International

Journal of Scientific & Engineering Research, 2014.

[6] A. a. J. S. Dalai, "Evaluation of web application

security risks and secure design patterns," in

Proceedings of the 2011 International Conference on

Communication, Computing & Security, 2011.

[7] D. a. P. S. Banerjee, "Research on software security

awareness: problems and prospects," ACM SIGSOFT

Software Engineering Notes, pp. 1-5, 10 2010.

[8] J. a. W. S. Andress, "The Basics of Information

Security: Understanding the Fundamentals of InfoSec

in Theory and Practice: Second Edition," pp. 1-217,

01 2014.

[9] M. Al-ibrahim, "The Reality of Applying Security in

Web Applications in Academia," International

Journal of Advanced Computer Science and

Applications, 2014.

[10] O. M. Y. a. R. I. Alhazmi, "Security Vulnerabilities in

Software Systems: A Quantitative Perspective," in

Data and Applications Security XIX, Berlin,

Heidelberg, 2005.

[11] P. technologies, "www.ptsecurity.com".

Acknowledgement

This research was supported by National Informatics

Centre. We thank our colleagues from NIC who provided

insight and expertise that greatly assisted the research. We

would also like to show our gratitude for sharing their

pearls of wisdom with us during the course of this

research.

